Skip to main content

2023 ai4libraries Conference: AI and Ethics

The subject of artificial intelligence (AI) in academia has been gaining increasing attention in recent years. Dr. Jason Bernstein, an expert in this field, gave a thought-provoking presentation on the intersection of AI, ethics, and scholarly activities. In his talk, Dr. Bernstein delved into several key ethical concerns related to the use of AI in academic research.

Firstly, data privacy and confidentiality are major issues that arise when dealing with AI systems. These systems often require extensive amounts of data to function effectively, which poses a threat to the privacy and confidentiality of the data used, particularly in scholarly research.

Secondly, AI systems can exhibit bias if the data used to train them is not representative or is skewed toward certain demographics. This bias can affect the output and functionality of AI in academic research, potentially leading to discrimination, which is a serious ethical concern.

Thirdly, AI systems can be very complex and their operations can be opaque to users, which makes it difficult to understand how results are derived and whether they can be trusted. This complexity and lack of transparency can be a major hurdle in the adoption of AI in academia.

Fourthly, there is a risk of both overtrust and undertrust when it comes to AI. Overtrust can lead to too much faith being placed in AI capabilities, potentially leading to reliance on inaccurate or unsafe outputs. Undertrust, on the other hand, can lead to skepticism toward AI, which might hinder the use of effective AI tools.

Fifthly, ethical use and authorship are also major concerns when it comes to AI in research. There are concerns about who should be credited as an author in scholarly works where AI plays a significant role. This relates to broader discussions about the accountability and responsibilities of AI systems in research.

Lastly, Dr. Bernstein touched on how increasing reliance on AI might affect interactions and collaborations among researchers. This is an important issue that needs to be addressed since effective collaboration is crucial for successful research outcomes.

Professional journals and organizations are beginning to address these issues by defining policies on AI authorship and the use of AI in scholarly publications. For example, the ACM and Science journal have stated that AI cannot be credited as an author, emphasizing the need for human accountability.

In conclusion, Dr. Bernstein's presentation highlights the evolving nature of AI and its impact on scholarly practices. He calls for a broad engagement among stakeholders, including librarians, researchers, and administrators, to address these ethical complexities and ensure the responsible use of AI in academia.

Comments

Popular posts from this blog

Protecting Artists from AI Overreach: The Rise of Glaze and Nightshade

Protecting Artists from AI Overreach: The Rise of Glaze and Nightshade The Devastating Impact of Generative AI on Artists' Livelihoods In the rapidly evolving world of artificial intelligence, a troubling trend has emerged that poses a grave threat to the creative community - the unchecked use of generative AI models to replicate and exploit the unique styles and identities of artists. As Ben Zhao, a Neubauer professor of computer science at the University of Chicago, has witnessed firsthand, this phenomenon has had a devastating impact on the lives and livelihoods of countless artists. The problem lies in the ease with which these AI models can be trained on an artist's body of work, effectively "stealing" their unique style and identity. Once trained, these models can then be used to generate endless variations of the artist's style, often without their knowledge or consent. The result is a proliferation of AI-generated art that bears the artist's name...
Should we let students use ChatGPT? | Natasha Berg | TEDxSioux Falls TLDR Natasha Berg explores the impact of AI, like ChatGPT, on education, raising concerns about critical thinking. Key Insights • AI's ability to write essays challenges educators and raises questions about critical thinking in ed • Tech advancements like ChatGPT force society to re-evaluate the value of traditional skills and educ • Blocking AI tools in schools may not be beneficial, and educators should consider teaching safe a • AI can be incorporated into classrooms to engage students in critical thinking and problem-solving • Teachers can use AI to save time on lesson planning, creating assessments, and making learning more • Schools should adapt to AI's impact on education and prepare students for its role in the 21st- Should we let students use ChatGPT? | Natasha Berg | TEDxSioux Falls Natasha Berg discusses the impact of AI, like ChatGPT, on education and how it challenges educators when students use i...

Decoding the Role of Large Language Models in Advancing Artificial General Intelligence

Exploring the Potential and Limitations of Large Language Models in the Path to Artificial General Intelligence The Promise and Pitfalls of Large Language Models As the field of artificial intelligence continues to evolve, the rise of large language models (LLMs) has sparked a growing debate around their potential as a pathway to Artificial General Intelligence (AGI). These powerful language models, trained on vast troves of textual data, have demonstrated remarkable abilities in natural language processing, generation, and understanding. However, the question remains: can LLMs truly be a bridge to the holy grail of AI, AGI? The Limitations of LLMs in Achieving AGI While LLMs have undoubtedly made significant strides in language-related tasks, they are not without their limitations when it comes to the broader goal of AGI. One of the key challenges is the lack of true "theory of mind" – the ability to understand and reason about the mental states of others. LLMs, despit...